Vineyard Weed Management and Covercrops

UC CE University of California Agriculture and Natural Resources Cooperative Extension John Roncoroni UCCE Weed Science Advisor, Napa

Direct competition

Direct competition

Extremely important when grapes are young. There is a milk carton under there!

Direct competition Water (stress) management

Direct competition Water (stress) management

If you determine how much water each vine should receive, how do you account for the weeds?

Direct competition Water (stress)management Frost protection

Direct competition Water (stress)management Frost protection

Interfering with absorption and reradiation of warmth may add to frost damage

Direct competition Water (stress)management Frost protection Harbor other pests

Direct competition Water (stress)management Frost protection Harbor other pests

Vole, gophers, insect hosts

Direct competition Water (stress)management Frost protection Harbor other pests Block air movement

Direct competition Water (stress)management Frost protection Harbor other pests Block air movement Reduced air movement could increase pathogens and frost potential

Direct competition Water (stress)management Frost protection Harbor other pests Block air movement Interfere with harvest operation

Direct competition Water (stress)management **Frost protection** Harbor other pests Block air movement Interfere with harvest operation By hand or machine, weeds in the cluster are not a good thing

Direct competition Water (stress)management Frost protection Harbor other pests Block air movement Interfere with harvest operation Effect crop quality

Direct competition Water (stress)management **Frost protection** Harbor other pests Block air movement Interfere with harvest operation **Effect crop quality** Off-flavors from weeds

Essentials of Good IPM Program for Weeds

Know the ecology and dynamics of your crop.
Know your weeds: Identification and biology.
Have a monitoring program- and use it!
Consider all management techniques and determine which is best for you

Essentials of Good IPM Program for Weeds

Know the ecology and dynamics of your crop.
Know your weeds: Identification and biology.
Have a monitoring program- and use it!
Consider all management techniques and determine which is best for you

Northern California Weed Control Calendar

- September
- October
- November
- December
- January
- February
- March
- April
- May
- June
- July
- August

Essentials of Good IPM Program for Weeds

- Know the ecology and dynamics of your crop.
 Know your weeds: Identification and biology.
- Have a monitoring program- and use it!
 Consider all management techniques and determine which is best for you

Malva

Ryegrass

• Species Lolium perenne L. – perennial ryegrass

- Subspecies multiflorum (Lam.) Husnot Italian ryegrass
- Subspecies perenne perennial ryegrass
- Species Lolium rigidum Gaudin Wimmera ryegrass

Confirmed Herbicide Resistance in Italian Ryegrass in Northern California

• Glyphosate (Roundup and others) (Lanini) • Glufosinate(Rely, Lifeline and others) (Jasieniuk) • Fluazifop(Fusilade) (Hanson, Brunharo) • Paraquat (Gramoxone) (Hanson, Brunharo) • Sethoxydim (Poast) (Hanson, Brunharo) (reduced effectiveness)

Essentials of Good IPM Program for Weeds

Know the ecology and dynamics of your crop.
Know your weeds: Identification and biology.
Have a monitoring program- and use it!
Consider all management techniques and determine which is best for you

Sharp-point Fluvellin (Kickxia elatine(L.)Dumort)

- Reproduces by seeds
- Most seeds germinate in spring or summer
- Will germinate thru fall if moisture is present.
- Seeds can last up to 20 years!

Transects 126 ft. long/ 252 points

Essentials of Good IPM Program for Weeds

Know the ecology and dynamics of your crop.
Know your weeds: Identification and biology.
Have a monitoring program- and use it!
Consider all management techniques and determine which is best for you

Undervine weed management strategies

Undervine cover cropping +/- mowing •Tillage • Flaming •Animals • Herbicides

Undervine cover cropping +/- mowing

Undervine cover cropping +/- mowing

Weed Competition

Erosion control

CO2 sequestration

Undervine cover cropping +/- mowing

Row #	willowherb	fluvellin	bindweed	oxtounge	sow/prec let	bur clover	dry grass
10	3.2%	0.0%	4.4%	2.4%	0.0%	4.4%	92.9%
13	1.2%	0.0%	1.2%	0.0%	0.0%	5.6%	87.3%
25	1.6%	0.0%	5.2%	0.0%	0.0%	1.2%	85.7%
31	0.0%	0.0%	4.0%	2.8%	0.0%	2.0%	96.4%

Transects 126 ft. long/ 252 points

Increased vertebrate pests

Undervine weed management strategies

 Undervine cover cropping +/- mowing •Tillage • Flaming •Animals • Herbicides

Is our vineyard suitable for mechanical cultivation?

Excellent weed controlNon-chemical

Tillage-timing is very important

Fossil Fuel Use

Release sequestered CO2

Erosion

Vineyard following cultivation

Tillage –

Undervine weed management strategies

 Undervine cover cropping +/- mowing •Tillage • Flaming •Animals • Herbicides

Flaming

burban P

Flaming - Advantages

No resistance

No residue

Non-chemical

Flaming Disadvantages

Timing important

Cost

Not as good on grass

Potential Fire Hazard

Undervine weed management strategies

 Undervine cover cropping +/- mowing •Tillage • Flaming •Animals • Herbicides

Undervine weed management strategies

Sheep?

In the right situation animals can do a good job of weed control

In the wrong situation animals can cause compaction, and crop damage-

Can be expensive- do you rent or buy? Commercial operations use 200-300 head/acre

Are there health/safety restrictions?

Undervine weed management strategies

•Undervine cover cropping +/- mowing •Tillage • Flaming •Animals • Herbicides

Herbicides Registered for Use on Bearing Grapes

Surflan Chateau Princep Goal Solicam Kerb Alion

Casoron Karmex Devrinol Trellis Prowl Matrix Mission

Glyphosate Gramoxone Rely Goal Shark Fusilade 2,4-D Poast Venue

Herbicide Resistance

Herbicide resistance: the inherited ability of a plant to survive and reproduce following exposure to a dose of herbicide normally lethal to the wild type "We used to be able to control this weed with this treatment but it doesn't work as well anymore..."

Herbicide Tolerance

Herbicide tolerance: the inherent ability of a species to survive and reproduce after herbicide treatment; implies no selection or genetic manipulation to make the plant tolerant "We've never gotten dependable control of this weed with this herbicide..."

Remove leaves and debris

Plots raked and treated on December19th with 10 oz Chateau +24 oz Roundup

Unraked plot

Raked plots

60% Leaf Cover

Raked pre-treatment

Unraked pre-treatment

Unraked post treatme

	3/1/	2008	6/12/2008		
% Leaf Cover	% Fillaree Cover		% Willowherb control		
	Raked	Not	Raked	N	ot
60	5	50	100	7	0
50	7	30	100	5	0
50	15	40	90	4	.0
40	3	20	90	5	0
40	5	10	100	7	0
33	1	15	90	7	0
25	5	20	100	7	0
Ave	8.30%	28%	96%	60)%

Vineyard Floor Management

Vineyard floors easily divide into two management areas:

Middle

Undervine

Undervine

Vineyard Floor Management

Middles: No Covercrop

Covercrop
Covercrops-Potential Benefits

Vineyard access in winter Reduced soil erosion and offsite movement Addition of organic matter Enhanced pest management

Covercrops-Potential Benefits

Improved soil structure and water penetration Enhanced aesthetics Addition of nutrients (nitrogen) Competition for moisture and nutrientsgrowth management

Covercrops-Potential Drawbacks

ncreased frost hazard **Competition for moisture and** nutrients Increased vertebrate pests Addition of nutrients (nitrogen)

Covercrops - Potential Drawbacks

Additional equipment Increased water use Increased cost and management

Vineyard Floor Management

Middles are managed as: No till-mowed permanent or annual cover Cultivated- 'mow down mix' Combination-every other row

No-Till MowingAdvantages

Erosion Control and reduced offsite movement More competitive to weeds Winter access to vineyard Vine vigor management

No-Till Mowing Disadvantages

Higher potential for frost Competition when growing near vines Increased water use

No-Till Mowing Disadvantages

Favors low-growing and perennial weeds

Cultivated Middles

Cultivated Middles

Cultivated Middles

Acidase of Witrogen

Cultivated Middles Advantages

Reduced competition for Water

Cultivated Middles Advantages

Controls Weeds in Middles

Cultivated Middles Disadvantages

Increased Erosion Potential

Cultivated Middles Disadvantages

Increased Dust Potential

Cultivated Middles Disadvantages

Increased Erosion Potential

Cultivated Middles Disad Vantages May increase vine vigor

Types of Covercrop

Resident Vegetation

Resident Mustards[,]

Cultivated Mustards/Radish

Insectaries mix

Annual Grass-reseeding

Perennial Legume-Clover

Annual Legume-Cereal Mix

Perennial Grass

Perennial Grass-Turf-Type

Covercrop Resources

Cover Cropping in Vineyards-*A Grower's Handbook*-Chuck A. Ingels, Robert L. Bugg, Glenn T. McGourty, and L. Peter Christiensen DANR Publication -3338

Covercrop Resources

UC SAREP Program webpagehttp://www.sarep.ucdavis.edu on the left menu look for Cover Crops

Thank You!

