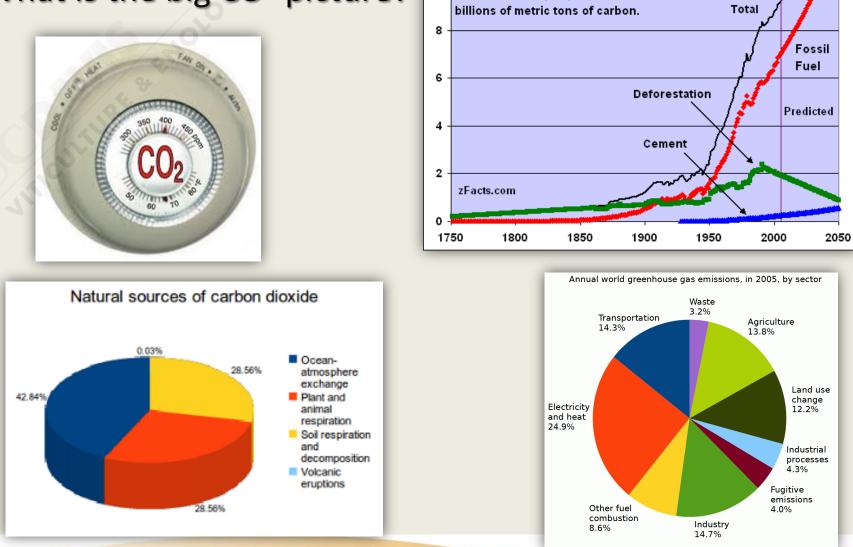

Introduction to Soil Health

Glenn McGourty, Winegrowing and Plant Science Advisor University of California Cooperative Extension Mendocino and Lake Counties


Regenerative Agricultural Systems

• Seek to promote soil and plant health by using photosynthesis for the removal and retention of atmospheric carbon dioxide into stable soil carbon.

What is the big CO² picture?

10

CO2 emissions per year in

UC CE University of California Agriculture and Natural Resources Cooperative Extension

Is Climate Change Inevitable or Can it Be Mitigated?

Rethinking the Role of Farms: Ecological Services

Watershed: protecting soil and water ways, storing water **Beneficial Insects and Pollinators** Habitat for Diverse Species **Sequestering Carbon** Sustainable, Biodynamic and Organic Farming Systems embrace these practices

The Concept of Soil Health

- Includes all aspects of soil quality
- Also includes carbon sequestration
- Active soil microbes
- High water infiltration rates and retention
- Protection of soil against erosion

Going in the Right Direction

- Keep soil covered
- Minimize tillage and soil disturbance

- Diverse plant species to increase biotic diversity below ground
- Keep living roots in the soil as long as possible throughout the year

New Techniques and Products

LandSmart[®] Carbon Farm Plan 2017

Ferrington Vineyard Carbon Farm Plan

> Prepared By: Kristin Cooper MCRCD

Prepared and Edited by: Jeff Creque Carbon Cycle Institute

Contributors Matt Prendergast, Linda MacElwee

Co-Owner, and Vineyard Manager: Norman Kobler

Organic and Biodynamic Agriculture: Require Addition of Organic Matter

- Compost
- Cover Crops
- Conservation Tillage

Energy Consumption: Chemical Fertilizers Vs. Compost

Material	Joules required to synthesize	BTU's required to synthesize	Amt. of water heated by 1 degree F*
1 kg of N—chemical	78,914,000	75,000	9,350 gallons
1 kg of N— Compost	527,500	1,100	136.5 gallons

*1 BTU= 1055 joules = amount of energy to raise one gallon of water by 1 degree F

Soil Organic Matter by Percentages

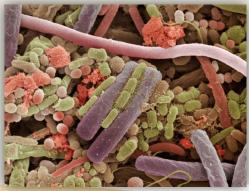
Organic Matter and Water

- One lb of organic matter (humus) can hold 40 lbs of water (5 gallons)
- Increasing soil organic matter by 1% can store an additional 21,000 gallons per acre
- Potential to increase water storage by 1/3 in moderate textured soils
- Plant cover can increase infiltration rates by 200% compared to tilled soils

Soils: Stomach of Our Ecosystem

Component (grass land system in a humid climate)	Kg/ha	Population Numbers
Organic Matter all	120,000	
Organic Matter non living	105,000	
Microbes	5,000	10 x 10 ¹⁸
Nematodes	20	2 x 10 ⁹
Earthworms	100	7 x 10 ³
Arthropods	100	4 x 10 ¹⁷
Vertebrates	42	4 x 10 ⁵

From H. Foth: Fundamentals of Soil Science, 7th Edition


Beneficial Activities of Soil Microbes

- Decomposition of plant residues for energy and growth
- N cycling as fertilizers and organic matter are decomposed
- Increase availability of P, Fe, So, K and others
- Humus formation, C cycling
- Aggregate formation
- Suppression of pathogens
- Mycorrhizal relationships

Immediate Effects of Cover Crops

- Plant tissue is the primary source of SOM
- Soil life is stimulated
- Cover crops serve as food source for vertebrates, invertebrates and microbes
- Soil respiration rates and microbe numbers increase

Soil Protection With Cover Crops

- Cover crop foliage shields soil from rain splashing, slaking of aggregates
- Water infiltration rates stay elevated
- OM conserved by preventing erosion
- Mulching effect keeps soil cool in summer, protects OM from oxidation

UC CE University of California Agriculture and Natural Resources Cooperative Extension

Cover Crop Types

Grasses

Legumes

Soil Carbon Builders

Insectary, disease suppression

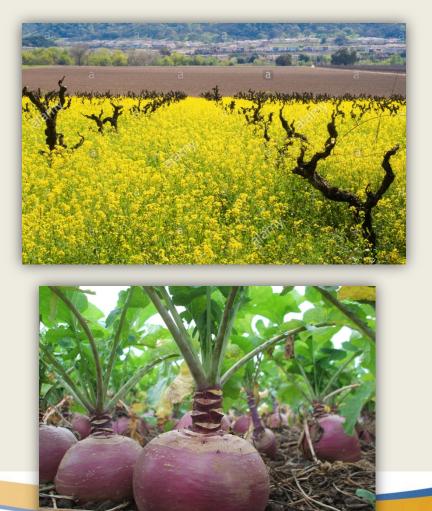
Insectary, Disease Suppression

Legumes

Legume Roots

What Can You Expect From Cover Crops In Terms of Nitrogen?

Cover Crop Type	Lbs N per Planted Acre
Vetches	50200
Medics (bur clover)	50-100
Sub clovers	30-100
Rose clover	50-100
White clover*	50-150
Strawberry clover *	50-150
Berseem clover	100-300


* Perennial—expect gophers, too!

Soil Carbon Builders

UC
CEUniversity of CaliforniaAgriculture and Natural ResourcesCooperative Extension

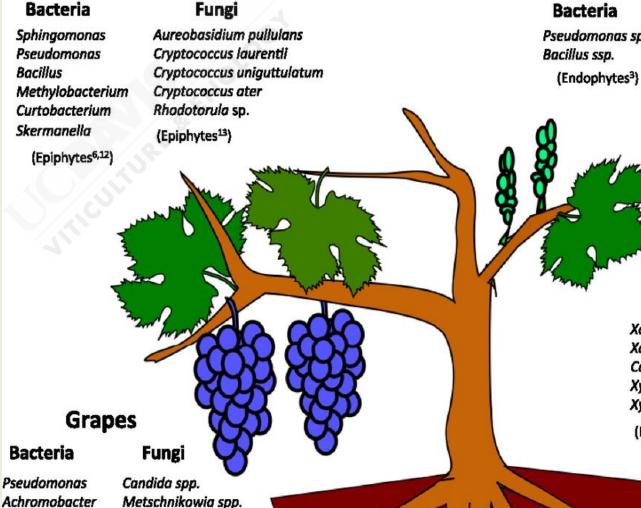
Insectary Cover Crops and Plantings

UC CE University of California Agriculture and Natural Resources Cooperative Extension

Looking Close: The Microbiome

The microorganisms in a particular environment, or the combined genetic material of the microorganisms in a particular environment.

"Understanding the microbiome—human, animal, and environmental—is as important as the human genome"



The Microbiome of Grape Vines:

- Phyllosphere: Leaf surfaces
- Fructosphere: Fruit
- Rhizosphere: Roots and soil
- Traditional methods of isolating individual species in pure culture will be assisted by genomics
- New science that will rapidly change how we view farming systems ecology

Leaves

Flowers

Pseudomonas sp.

Fungi

None identified.

Bark

Bacteria

Xanthobacter Xanthomonas Cellulomonas Xylella **Xylanimonas** (Epiphytes¹²)

Fungi

Aureobasidium pullulans Cryptococcus uniguttulatum Candida zeylanoides Filobasidium capsuligenum Rhodotorula sp.

(Epiphytes¹³)

Bulk soil

Bacteria

Clostridium

Rhizobium

Bacillus

Fungi

Filobasidium capsuligenum Aureobasidium pullulans Hanseniaspora uvarum

(13)

Acinetobacter

Paenibacillus

(12)

Streptococcus

(Epiphytes 5,12)

Flavobacterium

Cellvibrio

Massilia

Bacillus

Micrococcus

(Epiphytes^{9,10})

Aureobasidium pullulans

Cryptococcus spp

Rhodotorula slooffiae

Sporobolomyces roseus

Pichia spp.

Currency of the Microbiome: Exudates

- Plants communicate with microorganisms to to alleviate stresses, such as pathogen attack, drought-limiting nutrient acquisition, and metal toxicity to name a few
- Microbes benefit from plant exudates by using them as a resource, in many cases carbohydrates but also other nutrients.

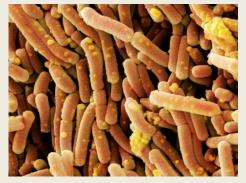
Phyllosphere of Grape Vines

- Generally, grape vine leaves don't seem to support large numbers of diverse species, or populations
- Ice nucleating bacteria affect freezing, research ongoing on controlling populations
- Bacteria most likely migrate from cover crops and neighboring vegetation

Phyllosphere, Plant Surfaces

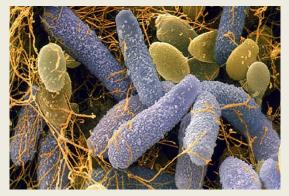


Samoray et al, 2016



Fructospehere: Microbes on Grapes Can Be Specific to Vineyard Sites

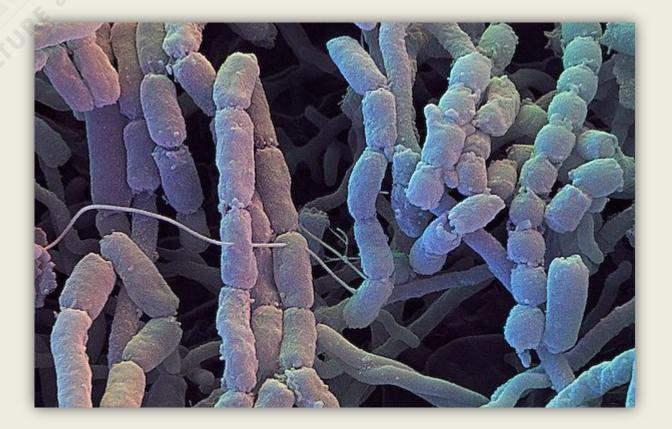
Saccharomyces cerevisiae



Lactobacillus


Sacchromyces on fruit

Schizosaccharomyces and Acetobactor

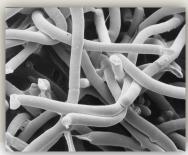

Rhizosphere

Trends in Plant Science

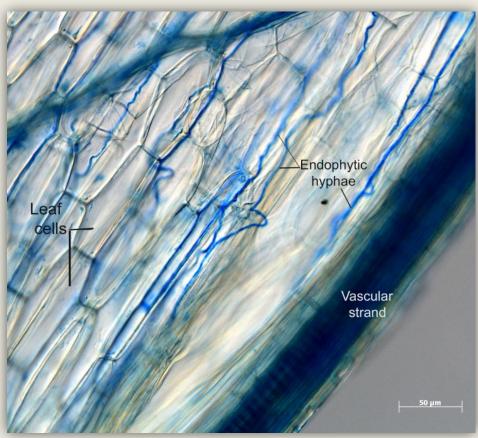
Actinomycetes

Fungi

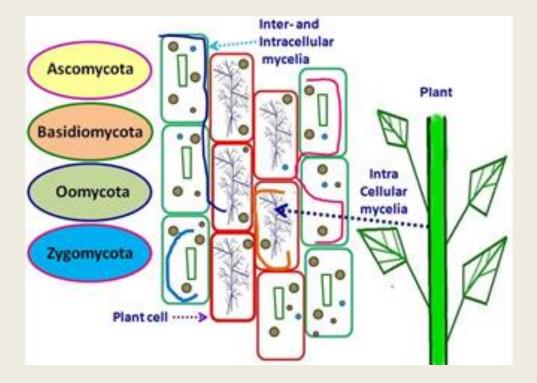
- Decomposers
- Mutualists
- Pathogens



Fungal Decomposers



- Can live in dryer conditions and lower pH than bacteria
- Decompose cellulose and lignin
- Unlike bacteria, fungi can form hyphae that penetrate substrates



Fungal Mutualists: Endophytic Fungi

Endophytic Fungi

Soil Health Assessments

Cornell Soil Health Assessment Training Manual

R.K. Gogino, O.J. Moren, R.H. Schindelheek, H.H. Gan D. D.H. Welle, J.F. Thies, and U.S. Ahari

> Internet University Unitspirat Spiratement I Areason

Soil Health Tests

	Soil Analysis	Description	Relationship to Soil Processes
	Physical		
	Texture	% of sand, silt, clay,	Inherent soil property that influences
		gravel content	ability to increase soil organic matter,
2			form stable aggregates,
	1C		retain/infiltrate/drain water.
	Bulk density	Weight of dry soil in	Indication of compaction, allows
		specific volume	calculation of soil C, N, other nutrients
			on area/volume basis
	Aggregate	% of aggregates	Related to soil water infiltration
	stability	stable to simulated	capacity, nutrient retention. Changes
		rain	relatively rapidly with soil management
			changes because of the role of living
			organisms in soil aggregation (e.g.
			fungal hyphae, earthworm casts,
			bacterial compounds stabilize
			aggregates).

Chemical Testing

Chemical	Relationship to process
рН	Soil pH can influence nutrient
	availability, soil biology and plant
	health
Phosphorus	Important to cover crops more than
(P)	grape vines
Calcium (Ca)	5:1 ratio of Ca to Mg
Magnesium	Excesses an issue for aggregate
(Mg)	formation and stability
Cation	Should build over time with organic
exchange	matter increases
capacity (CEC)	

Biological Testing

Biological	Description	Relationship to process
Total organic	% of soil as C by	TOC is an accurate indicator of soil organic
carbon (TOC)	weight, carbonates	matter (SOM), which is important for water
	removed with acid	holding capacity, as CEC, in aggregation, as
	treatment	nutrient supply. Soil microbes are part of
		SOM, and SOM is their food supply.
Active carbon	Permanganate	POC is a measure of labile carbon, and
	oxidizable carbon	therefore is related to microbial biomass
	(POC)	and changes more rapidly than TOC
		following management changes.
Total organic		
nitrogen (N)		
Potentially	Nitrogen released	Indicator of soil fertility, organic matter
mineralizable N	from organic matter	quality
(PMN)	during a <u></u> week	
	incubation	

What is the End Game?

- Personal effort to address climate change and build resiliency into your vineyard
- CDFA Healthy Soils Incentive Program: may start paying for carbon credits
- New sections for Code of Sustainabilty, SIP, Lodi Rules, etc.
- We would like to work with Oregon LIVE

North Coast Soil Health Hub: soilhub.org/

 Cornell Soil Health Assessment: https://soilhealth.cals.cornell.edu/

CDFA- Climate Smart Ag Grants

- State Water Efficiency and Enhancement Program (SWEEP)
 - Max \$100k
 - Must reduce GHG emissions AND save water
 - Deadline to apply March 8th
- Healthy Soils Program (HSP)
 - Incentives Program max \$75k
 - Demonstration Projects max \$250k
 - Eligible practices proven to improve soil health, sequester Carbon, and reduce GHGs
 - Deadline to apply March 8th

Alternative Manure Management Program (AMMP)

- Incentives Program max \$750k (\$2million additionally available for Demonstration Projects)
- For Dairy/Livestock Operators who wish to implement non-digester manure management practices resulting in a reduction of methane emissions
- Deadline to apply April 3rd

For more information, visit CDFA'S website: https://www.cdfa.ca.gov/oefi/

CDFA- Climate Smart Ag Grants

UC Cooperative Extension's

Technical Assistance

<u>Providers</u>

- University/CDFA partnership
- 10 Community Education Specialists hired throughout the state to assist interested applicants

- Britta Baskerville- UCCE Ukiah
 - SWEEP & HSP
 - (707) 463- 4158
 - blbaskerville@ucanr.edu
- Randi Black (Dairy Advisor)-UCCE Santa Rosa
 - AMMP
 - (707) 565- 2648
 - rablack@ucanr.edu

Thanks for your attention!

