Site suitability: Evaluation of climatic, water and soil factors

Mark Battany

Water Management and Biometeorology Advisor San Luis Obispo and Santa Barbara Counties

Outline

- Climatic factors
 - Too cold? Hot?
 - Adaptation
- Water factors
 - Quantity & quality; impacts over time
- Soil factors
 - Limitations for vine growth? Sites to avoid?
 - Fundamental site capacity

Climatic factors

- Seasonal heat accumulation (or average temp) influences varieties/types of production
- Winter cold damage
- Frost risk next presentation
- Heat damage
- Wind
- Influence of topography, location choice
- Adaptation/adjustment

Hobo 64k Pendant temp

Image: SLO County Ag Commissioner

Degree day accumulation

Table 2: Winkler Region Growing Degree-Day Limits and Wine Style Suitability(Winkler et al., 1974), updated by Jones et al. (2010).

Regions	Degree- Days (F° Units)	Degree- Days (C° Units)	Suitability		
Region Ia	1500-2000	850-1111	Only very early ripening varieties achieve high quality, mostly hybrid varieties and some <i>V. vinifera</i> .		
Region Ib	2000-2500	1111-1389	Only very early ripening varieties achieve high quality, mostly hybrid varieties and some <i>V. vinifera</i> .		
Region II	2500-3000	1389-1667	Early and mid-season table wine varieties will produce good quality wines.		
Region III	3000-3500	1667-1944	Favorable for high production of standard to good quality table wines.		
Region IV	3500-4000	1944-2222	Favorable for high production, but acceptable table wine quality at best.		
Region V	4000-4900	2222-2700	Typically only suitable for extremely high production, fair quality table wine or table grape varieties destined for early season consumption are grown.		

Grapevine Climate/Maturity Groupings

Cool >	 Intermediate > 	< Warm	>	<	Hot	>
Average Grov	ving Season Tempe	erature (NH Ap	or-Oc	t; SH C	Oct-Apr)	
55 - 59°F	59 - 63°F	63 - 67°F		67	′-72°F	
Muller-Thurgau]					
Pinot Gris	Ave	era	age			
Gewurztramin	er j			U		
Rie	ten	np	era	iture		
Pinc	ot Noir					
	Chardonay]				
	Sauvignon Blanc					
	Semillon					
	Caberr	et Franc				
	Ter	npranillo				
		Dolcetto]			
		Merlot				
		Malbec				
		Viognier				
		Syrah)		
	Γ	Ta	ble g	rapes		
	abernet Sauvigr	non				
	Ξ	Sangiovese	2			
		Grenache				
		Carigna	ne			
		Zinf	andel			
		Ne	bbiol	0]	
Produced by Dr. Gregory V. Jones			Raisi	ns		

Figures by Greg Jones

Daytime warmth near the ground

Winter cold

Temperature extremes

Summer heat

Wind

Increasing heat, lengthen season

lmages: Mari Vineyards, Michigan

Reducing sunburn

University of California Agriculture and Natural Resources

ti i

Reducing heat

Reducing wind

Water supply factors

- Old adage:
 - Wine grape vineyard ET roughly 18" per year
- Some is supplied by rainfall
 - Not all rainfall is "effective"
 - Varies by locale: Paso Robles vs. Mendoza
- The rest needs to be supplied by irrigation
- Will require a certain total volume, and flow rate to meet peak demand

Irrigation amount as a function of regional rainfall in CA

Paso Robles – Average monthly irrigation

Sites differ from these averages

 Differing soil water storage capacity of individual sites; consider:

- Deep soil, fine texture
 - Stores much more water, requires less irrigation
- Shallow soil, coarse texture
 - Stores much less water, requires more irrigation

Differing canopy water requirements

Water quality concerns

- Grapes are sensitive to issues which may not affect other crops, e.g. alfalfa, pasture
- High boron
- High salinity (TDS)
- Clogging potential hardness, iron/manganese
- Chloride toxicity
- Sodium soil hazard, toxicity

Effect of high salinity (soil electrical conductivity)

5C vineyard

1103P replant

Clogging potential

Sodium damage

- Destroys structure
- Impedes infiltration

Water analysis is key

- Test for "irrigation suitability"
- Heed lab recommendations for:
 - Limitations with sensitive crops (example boron)
 - Need to treat with acid, adjust pH
 - Ongoing maintenance for sodium

Soil factors

- Tilth: physical suitability for growing a crop
- Physical limitation: poor drainage, barriers
- Chemical limitations: lime, high magnesium
- Fertility: excess, insufficiency
- Variability: challenge for uniform growth

Need to evaluate deep soil conditions

Topography challenges

Shallow bedrock

Maharashtra, India

Deep restricted drainage

East of Mendoza, Argentina

Impermeable clay layer

Water-logged soils?

Soil texture interface

Sandy clay

Pure sand

Zone of saturation

Abrupt texture interface

Excessive fertility, nitrogen

University of **California** Agriculture and Natural Resources

10

deet

4110

n n n n n

University of **California** Agriculture and Natural Resources

High magnesium – serpentine Dense, poorly structured

Assessing variability

Loam + rocks Well drained Well aerated

Heavy clay Poorly drained Poorly aerated

Limitations to changing soil

Deep ripper

Sulfur

Questions?