Redeveloping Vineyards What to Consider

UC Davis and UC ANR Grapevine Short Course February 13, 2019

Rhonda Smith Viticulture Farm Advisor Sonoma County

Photo and Slide Acknowledgements

- Andrew Walker, UC Davis Department of Viticulture and Enology
- Howard Ferris, UC Davis Department of Nematology
- VineView, Napa
- Mark Greenspan, Advanced Viticulture, Windsor
- Paul Anamosa, Vineyard Soil Technologies, Napa
- Doug Beck, Monterey Pacific, Inc., Soledad
- Pete Opatz, Route 128 Winery, Geyserville
- Jose Urbez-Torres, Agriculture and Agri-Food Canada, Summerland, BC, Canada
- Mike Bobbitt, Mike Bobbitt and Associates
- Ray Carlson and Associates, Santa Rosa

Redeveloping vineyards: what to consider

- Factors to consider when deciding if an established vineyard should be redeveloped.
- How subsequent vineyard design and plant material decisions are informed by previous vineyard's performance
- Assessing the need for pre-plant fumigation
- Rootstock choices based on site concerns
- Spacing and trellising considerations

Factors to consider when deciding an established vineyard should be redeveloped.

- Yield reduction due to pests and disease
 - Grapevine trunk disease
 - Virus disease
 - Soil borne pests
- Fruit quality is negatively affected by grapevine virus diseases *
- Vine growth is restricted by soil factors
- Cultivar is in less demand and/or grown in a region not considered optimal; price per ton is not sustainable

Uniform canopies Acceptable yields

Sun alimiticularicularian and time **Row Direction Optimization – mapping canopy** exposure in the warmest period of the season

- The Vine Illumination Analysis allows us to model:
- Day of the year
- Time of day
- Vine spacing
- Vine Height
- Fruitwire Height
- Slope
- Aspect

Mike Bobbitt & Associates http://www.mikebobbitt.com

From: Greenspan. July 2008, Wine Business Monthly

Grapevine trunk disease

Trunk Diseases in California

- Caused by fungal pathogens (Ascomycetes)
- Infect grapevines through wounds and openings
- Symptoms include:
 - Grapevine decline Dead arms, cordons and trunk Blockage of vascular system Yield losses / Death of the plant

• Arm and Trunk dieback - Eutypa spp. and other Diatrypaceae

Converting vines from cordon trained and spur pruned to cane pruned

Percentage of planted acres producing fruit

Virus disease: Grapevine red blotch disease

Caused by Grapevine red blotch-associated Virus

Chardonnay

Virus disease: Grapevine leafroll disease

Caused by species of Grapevine leafroll-associated Virus

Spread documented by Golino & Weber (California Agriculture, 2008) Ins

Insect vectors: *Mealybugs and scale*

Fanleaf degeneration

Caused by: Grapevine fanleaf virus Nematode vector: *Xiphinema index*

Merlot on 110R

Zinfandel on St. George

Ring nematode abundance prevented adequate cane growth; reduced yields

Six year old Pinot noir vineyard removed

Grape Phylloxera Daktulosphaira vitifoliae

Photo: J. Garnett

1989; Phylloxera infested Chardonnay on AXR#1

Damage

Tuberosities

Fungal necrosis

Nodosities

Root

death

Shorter rootlet lifespan

Vine stunting, yield decline, vine death

When should you fumigate prior to planting for nematodes?

Untarped Telone II application prior to replanting a vineyard

Photo: Larry Bettiga

California Grapes: Co-distribution of Nematode species

Slide source: Howard Ferris

Host status of grape rootstocks to nematodes

Genotype	Parentage	M. incognita Race 3	M. javanica	<i>Meloidogyne</i> pathotypes Harmony A&C	M. chitwoodi	X. index	M. xenoplax	P. vulnu	T. semipenetrans	X. ameriacanum	Para. hamatus
101-14Mgt	V. riparia, V. rupestris			R		S	S	MR			S
1103Paulsen	V. solonis x V. riparia			S		S	S	MS			S
110Richter	V. berlandieri, V. rupestris			MR		S	S	S			S
140Ruggeri	V. berlandieri, V. rupestris			MR		S	S	S			MS
1613Couderc	V. solonis, V. othello	R	R	S	S	MR	S	MS	S	S	
1616Couderc	V. solonis, V. riparia			MR		S	S	MS			S
3309Couderc	V. riparia, V. rupestris	S	S	S		MS	S	S	S	S	S
420A	V. berlandieri, V. riparia			R		S	S	MS			S
44-53Malegue	V. riparia, V. cordifolia, V. rupestris			S		S	MR	MS			S
AxR1	V. vinifera, V. rupestris			S		S	S	S			S
Borner	V. riparia, V. cinerea			R		R	S	MS			
Dog Ridge	V. champinii	R	R	S		S	S		MR	MR	MS
Freedom	V. champinii, V. longii, V. vinífera, V. riparia, V. labrusca	R	R	S	S?	R	MS	MS	S	MS	MR
Harmony	V. champinii, V. longii, V. vinífera, V. riparia, V. labrusca	R	R	S	S	MS	S	S	S	S	S
K51-32	V. champinii, V. rupestris	MR				MS	S	R	S		S
Kober 5BB	V. berlandieri, V. riparia			R		S	S	MS			MR
Ramsey	V. champinii	R	R	S	S?	MR	S	MS	MSS	S	S
Riparia Gloire	V. riparia			R		R	S	MR			S
R\$-3	V. candicans, V. riparia, V. rupestris	R	R	MR	MR	S	S	MR			S
RS-9	V. candicans, V. riparia, V. rupestris	R	R	R	R	S	S	MS			S
Schwarzmann	V. riparia, V. rupestris	S	MR	S		MR	MS	S	S	MS	S
St. George	V. rupestris	S		S		S	S	MS			MS
Teleki 5C	V. berlandieri, V. riparia	MS	MR	S		MR	MS	S	S	S	MS
USDA 10-17A	V. simpsoni, M. rotundifolia	R	R	R	R	R	MS	R	R		
USDA 10-23B	V. doanianna	R	R	R	R	R	MR	R	R		
USDA 6-19B	V. champinii	R	R	MS	R	MR	MR	R	R	R	
VR O39-16	V. vinifera, M. rotundifolia	S	S	S		R	R	MR	S	MR	MR

Ferris, Zheng and Walker. 2012. Journal of Nematology 4(4)

GRN Rootstocks

	Root lesion Nematode	Citrus Nematode	Ring Nematode	Phylloxera Nodosities	HR Highly
GRN-1	MR	R	R	HR	Resistant R Resistant MR
GRN-2	MR	MS	MS	HR	
GRN-3	MR	MR	MR	R	Moderately Resistant
GRN-4	MR	MR	MR	R	MS
GRN-5	MR	MR	R	MS	Susceptible

All GRN rootstocks are resistant to *Xiphenema index,* 3 strains of root-knot nematodes, these combined, and at high soil temperatures.

Ferris, Zheng and Walker. 2012. Journal of Nematology 4(4)

Remote Sensing In Vineyards

NDVI Imagery

resistivity (mS/m)

Soil Electrical Conductivity

Ray Carlson & Associates – Fresno State

Goal: Reduce the variability in the block

Vine capacity and site vigor are the primary considerations for vineyard design and canopy management

- Vineyard design
 - Row orientation
 - Row & vine spacing
 - Trellising
 - Rootstock

Comparison of row direction & shading effects on NDVI and EVI Images

Color Infrared 5/30/14

Sun aligned with, or perpendicular to, rows can cause false apparent vigor differences

Comparison of row direction & shading effects on NDVI and EVI Images

NIR - Red

NIR + Red

Relative NDVI 5/30/14

11:59 am

2:09 pm

Shadows related to row direction can cause apparent changes in vigor at specific times of day (between morning and afternoon NDVI images)

G x (NIR - Red)

NIR + (c1xRed - c2xBlu + L)

Relative EVI 5/30/14

Coefficients: c1,c2 = aerosol resistance G = Gain factor L = Canopy background adj. for non-linearity in NIR & Red

11:59 am

2:09 pm

EVI is much less sensitive to shadows & soil boundaries & more directly sensitive to Leaf Area Index

FLIGHT INFORMATION

Calibrated EVI -Absolute Data Product

Sept. 14, 2018 Date Flown

EVI Values

FLIGHT INFORMATION

Calibrated EVI -Relative Data Product

Sept. 14, 2018 Date Flown

EVI Values

FLIGHT INFORMATION

Pure Vine Zones -Relative

Sept. 14, 2018 Date Flown

EVI Values

PD; High ring and dagger nematode counts

Low nematode counts; Highly compacted soil

> Massive subsoil; High ring and dagger nematode counts

00000

Soil Profile

> 29 ^{""} 30 ['] 31 [']

> > 33 ["] 34 ["]

35 " **36 "** 37 "

> 38 ["] 39 ["] 40 ["]

41 *** 42 ** 43 ** 44 ** 45 ** 46 ** 47 ** 48 ** 50 ** 51 ** 52 ** 52 ** Massive, unstructured subsoil. Not penetrated by roots

- Where is the root zone?
- Structure, texture, rock content by depth
- Chemistry by depth
- Sample for nematodes

Soil Catena on Block 507

All photos: Doug Beck, Monterey Pacific, Inc.

Vine removal

Pluck and Plant Infrastructure remains intact

Vibrosoiler for mid-row ripping

Vibrosoiler for mid-row ripping

Spacing and trellising considerations

Mechanizing more farming practices will allow you perform practices on time

Practices occur later than optimal

Thank you