#### Alexander Levin, Viticulturist and Assistant Professor Southern Oregon Research and Extension Center and Department of Horticulture

D



### Physiology vs. culture

Plant physiologists are primarily interested in learning how [vines] grow, while [viticulturists] are interested primarily in how to grow [vines] efficiently. The two objectives are more closely related than generally supposed because in order to grow [vines] efficiently one must understand the basic physiological processes which control growth and how they are affected by environmental factors and cultural processes...The greatest overall progress will occur when physiologists learn more about how [vines] grow while [viticulturists] learn more about the physiology of [vines]...

*Physiology of Woody Plants (Kramer and Kozlowski, 1979)* 

# Structure and properties of **WATER**

#### Size, shape, and polarity



#### High surface tension



#### Cohesion, adhesion, and capillarity



#### High tensile strength



### Water TRANSPORT PROCESSES

#### Diffusion



#### Osmosis



#### Bulk or mass flow



## Water movement through SOIL-PLANT-ATMOSPHERE CONTINUUM

#### Water potential ( $\Psi$ )



#### Stomates: connection to atmosphere

H<sub>2</sub>O from xylem



### Xylem: specialized pipes



#### Gradient from soil to root cell





# Daily and seasonal **VINE WATER RELATIONS**

OREGON STATE UNIVERSITY 17

#### Time lag between water loss and uptake



#### Diurnal course of water potential



#### Seasonal course of midday $\Psi_{\text{leaf}}$



#### Cultivar-specific stomatal behavior



Levin et al. (*In revision*)



#### Aglianico

- O Cinsault
- O Cabernet Sauvignon
- Durif
- Freisa
- Grenache
- A Malbec
- $\triangle$  Montepulciano
- $\triangle$  Petit Verdot
- Refosco
- 🔷 Souzão
- 🛇 Syrah
- ▼ Tinta Amarela

- + Tinta Madeira
- $\times$  Touriga Nacional

Levin et al. (In revision)



L. E. Williams (2010)

### Factors affecting VINE WATER USE

#### Solar radiation drives vine ET



#### Crop coefficient depends on row spacing



#### Crop coefficient depends on trellis type



## Water use declines with soil water depletion 1.0









# Effects of water deficits on **VEGETATIVE GROWTH**

#### General plant response to water stress



Bradford and Hsiao 1982

### Rating tendrils



Photo by AD Levin

#### Rating shoot tips



**Rapid Growth** 

Slowing Growth

Almost Stopped

Stopped

Dead Tip

Photo by Advanced Viticulture, Inc.

#### Effects of water stress on organ growth



Schultz and Matthews 1988

#### Leaf angle and sun avoidance



#### Effect of water potential on leaf angle



Levin et al (unpublished data)

#### Effect of cultivar on leaf angle

|                    | Leaf angle                |    |
|--------------------|---------------------------|----|
| Cultivar           | (degrees from horizontal) |    |
| Freisa             | -78.6 c                   | 1  |
| Petit Verdot       | -77.3 c                   |    |
| Souzão             | -77.3 c                   |    |
| Refosco            | -76.4 c                   | M  |
| Touriga Nacional   | -73.5 bc                  | Но |
| Tempranillo        | -72.9 abc                 | or |
| Grenache noir      | -69.0 abc                 |    |
| Syrah              | -66.8 abc                 |    |
| Tannat             | -59.7 ab                  |    |
| Cabernet Sauvignon | -58.0 a                   | ţ  |

More Horizontal or erect

Levin et al (unpublished data)

#### Leaf senescence and desiccation



#### Effect of water potential on leaf drop



Levin et al (unpublished data)

#### Water deficits reduce shoot growth



#### Pruning weight response to midday $\Psi_{\text{leaf}}$



# Effects of water deficits on **REPRODUCTIVE GROWTH**

OREGON STATE UNIVERSITY 44

#### Reproductive growth is less sensitive



#### Berry growth occurs in two phases



Time



#### **Contraction more sensitive preveraison**



#### Growth rate more sensitive preveraison



Alexander Levin, Assistant Professor of Viticulture Southern Oregon Research and Extension Center and Department of Horticulture 569 Hanley Rd., Central Point, OR 97520 <u>alexander.levin@oregonstate.edu</u>

## THANKS A BUNCH! QUESTIONS?



