Vineyard Design Spacing and Trellis Selection

Larry Bettiga Viticulture Advisor Monterey, Santa Cruz and San Benito Counties

Spacing & Trellis Decision Goals

- High quality as defined by your market
- High productivity per acre
- Vineyard that is efficient to farm

Definitions

- Vine vigor is a measurement of the rate of vine growth.
- Vine capacity is the total annual vegetative and fruit biomass produced.
- Vine size is the annual vegetative growth

Capacity refers to the vine's ability for total production rather than rate of growth.

Factors Influencing Vigor

- Soil depth, texture, water-holding capacity, fertility
- Climate
- Rootstock
- Variety
- Spacing
- Farming practices irrigation, fertilization, site preparation, cover crops

Characteristics of the Ideal Wine Grape Canopy

Canopy Character	Optimal Value
Shoot density	\sim 5 shoots per foot
Shoot length,	15 to 20 nodes
Lateral shoot development	None to very minimal
Growing shoot tip presence	Ideally none
Ratio of leaf area to fruit weight	$3 \text{ to } 8 \text{ ft}^2/\text{lb}$
Leaf layer number	(0.0 to 1.3 m-7 kg) 1-2
Percent exterior leaves	80-100%
Percent exposed clusters	50 to 80%
Cane weight	0.7 to 1.4 oz
Internode length	(20 to 40 g) 2.4 to 3.1 in
Pruning weight	0.2 to 0.4 lb/ft
Ratio of crop weight to pruning weight	5-10

Adapted from Smart and Robinson 1991

SPACING

Vineyard spacing has 2 components:

Row Spacing

Vine Spacing

Row Spacing:

- Based on farming equipment
- Light Interception efficiency
- Operational efficiency

Vine Spacing:

Based on anticipated vine vigor

- What equipment will be going down the row?
- How wide is it?

12 Foot row width

5-foot row wicith

J III

ILS FILLER

5 foot row

Light Interception efficiency

6 foot

Based on 6-foot in-row spacing

In-Row Vine Spacing

Should be based on anticipated vine vigor.

In-Row Vine Spacing

 Close enough together to produce a continuous fruit zone without gaps.

In-Row Vine Spacing

- Close enough together to produce a continuous fruit zone without gaps
- Far enough apart to provide space for enough buds to be left at pruning in order to balance the vine

Vine Spacing

28 in

48 in

<mark>68 in</mark>

8 x 10 spacing, 66 in high cordon

Planting Density # vines/acre = 43,560/row spacing (ft) X vine spacing (ft)		
Spacing (ft)	Vines per acre	
8 x 12	454	
6 x 12	605	
4 x 12	908	
8 x 8	681	
6 x 8	908	
4 x 8	1361	

Vine Density Effects

Yield per vine

Plant density

Vine Density Effects

Yield per acre

Plant density

ROW ORIENTATION

Row Direction Considerations

- Row length: long vs. short
- Hillside slope
- Soil variability
- Prevailing wind
- Sunlight interception
- Sunburn
- Ripening uniformity

FIGURE 14: Light interception by a vertically shoot-positioned canopy in the morning, at midday and afternoon.

Row Direction	Balance of light exposure (ratio)	Sunburn risk
E-W	Maximum uneven (4:1)	High (south side)
N-S	Even (1:1)	Very high (west side)
NE-SW	Somewhat uneven (2:1)	Moderate (NW)
NW-SE	Somewhat uneven (2:1)	Extremely high (SW side)
TRELLS

Goals of Training/Trellis System

- 1. Support the mechanical load of the grapevine
- **2.** Facilitate the cultural operations
- **3.** Maximize canopy exposure
- **4.** Improve the canopy microclimate
- 5. Promote balance between the vegetative growth and crop to optimize quality and quantity

Relative differences in climate in a dense canopy

(Smart 1984)

Vine Balance or Capacity

Leaf area or vegetative growth Fruit yield or reproductive growth

Canopy Characteristics

Indices	Measure
<u>Fruit yield</u> pruning weight	Production efficiency
<u>Exposed leaf area</u>	Canopy efficiency
Total leaf area	-fruit ripening capacity
Exposed clusters	Fruit exposure
Total clusters	-composition and flavor

Measuring "balance" Yield / Pruning Weight ratios • Lbs of crop / lbs of prunings per vine

- <3 Undercropped</p>
- 4-8 Normal
- >10 Overcropped

Reds generally lower than whites

Trellis Options

Non-Trellised

Single Curtain Systems

SINGLE CURTAIN SYSTEMS

Two-wire vertical trellis (also called Simple Curtain or California Sprawl)

Single wire high cordon

VSP Modifications

Vertical canopy division or separation

Vertically Divided

Scott – HenrySmart - Henry

Vertically Separated

Smart - Dyson

SINGLE CURTAIN SYSTEM WITH VERTICALLY DIVIDED FOLIAGE

VERTICALLY DIVIDED DOUBLE CURTAIN

VERTICALLY DIVIDED DOUBLE CURTAIN

Horizontally Divided Double Curtain Systems

Trellis Options

Shoot Orientation

Horizontal/ Downward

Vertical

Moderate to low growth rate

Result

High growth rate

Other Design Considerations

- End assemblies
- Metal or wood trellis materials
- Staging areas
- Turn-around space (20 to 30 ft)
- Ability to mechanize harvest and pruning

Vineyard Design

There is not a "one size fits all" design for all sites.

 For a given site there is no "best" design

 All factors need to be considered to match the design to the economic and production goals of the vineyard

 Vine density and trellis should match vine vigor

 Ability to predict the potential vigor of a site is key to the decision making process
