Aspects Related to Mineral Nutrition in Irrigated Grapevines

Larry Bettiga
Viticulture Advisor
Monterey, Santa Cruz and San Benito Counties
Mineral Nutrient Deficiencies and Excesses in Grapes

<table>
<thead>
<tr>
<th>Common</th>
<th>Less Common</th>
<th>Infrequently or not observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>Phosphorus</td>
<td>Calcium</td>
</tr>
<tr>
<td>Potassium</td>
<td>Magnesium</td>
<td>Sulfur</td>
</tr>
<tr>
<td>Zinc</td>
<td>Iron</td>
<td>Copper</td>
</tr>
<tr>
<td>Boron</td>
<td>Manganese</td>
<td>Molybdenum</td>
</tr>
</tbody>
</table>

- **Excesses**
 - Nitrogen
 - Chloride
 - Boron
 - Sodium

Macronutrients - yellow
Micronutrients - white
Managing Mineral Nutrition

Knowledge of:

• Site/Soil characteristics and chemistry
• Vineyard production goals
• Fertilizer inputs
• Cultural practices
• Tissue and soil analysis
• Observation and judgment
Drip irrigation

“Farming in a flowerpot”

Relatively small proportion of total nutrients available
FERTILIZERS

• Fertilizers are a method of supplying supplemental elements where deficient or unavailable to the plant

• The most common element supplied by fertilizers to vineyards is nitrogen
Nutrient Mobility

• Another way of classifying nutrients is their behavior in water.

• Some move wherever water goes and some are held strongly by the soil.
Problem: Contamination of surrounding water bodies

Nitrates, Phosphorous

Eutrophication

Lakes and Streams

Groundwater

Nitrates
Nutrient Management

• Nitrogen basics:
 – Essential plant nutrient
 – Taken up by plants in both ammonium (NH$_4^+$) and nitrate (NO$_3^-$) forms
 – Majority of plant uptake is the nitrate form

• Nitrogen becomes an environmental problem when it moves off-site
 – Surface water, groundwater
 – Agriculture is only one of the nonpoint sources
Nitrogen Sources

- Soil reserves
- Irrigation water
- Fertilizer
- Cover crops
Nitrogen cycle

- Fixation
- Organic Matter
- Microbes
- Root uptake
- Solution: $\text{NH}_4^+ + \text{NO}_3^-$
- Crop removal
- Denitrification
- Ammonium volatilization
- Fertilizer, Residues, Amendments
- NH$_4^+$ on clay
Nitrogen cycle

Organic Matter

solution $\text{NH}_4^+ \text{ NO}_3^-$

NH_4^+ on clay

NO$_3^-$ Leaching

Runoff
Determine Fertilizer Requirements

- Determine nutrient contents of soil amendments
 - Manure, compost
Determine Fertilizer Requirements

• Evaluate well water for nutrient levels

1 ac/ft water with 10 ppm nitrate-N provides 27.9 lbs/N per acre

The nitrates from well water are indistinguishable from fertilizer nitrates, and function identically.
Apply Fertilizers Efficiently

- Time Fertilizer Application to Plant Uptake
- Consider split applications of materials

Nitrogen accumulation (g)

- Bud burst
- Bloom
- Veraison
- Fruit
- Harvest
- Leaf fall
- Pruning
- Bud burst

Fruit

Leaves

Shoots

Trunk

Roots

Apply Fertilizers Efficiently

- Time Fertilizer Application to Plant Uptake
- Consider split applications of materials
Apply Fertilizers Efficiently

Once crop nutrient requirements are determined:

Use fertigation to apply fertilizers, if feasible
Apply Fertilizers Efficiently

Irrigation system

- Practices to improve system efficiency & uniformity
Reduce Nutrient Movement

- From water, wind, eroding soil
 - Cover crops
 - Filter strips
 - Vegetative Buffer Strips

- Sequester nutrients, keep in organic form
- Reduce erosion
- Trap sediments
Reduce Nutrient Movement

- Manage irrigation and fertigation to avoid losses below root zone

- Avoid applying fertilizers prior to predicted rain events
Factors affecting nutrient uptake

Absolute deficiency

Nutrient is at inadequate levels for vine growth

Induced deficiency

Nutrient present in but uptake by grapevine roots affected by:

- Phylloxera or nematode damage
- Soil moisture status or irrigation patterns
- High levels of other mineral in the soil
- Variety or rootstock
- High crop levels
Tissue sampling

✓ Most reliable method for nutritional analysis
✓ Nutrients that the vine can remove from soil

Two sampling purposes:

1. General nutritional levels
2. Diagnosing visible vine disorders
A major limitation is that soil analysis is not a good indicator of nutrient availability.
In a nutrient management program, soil analysis is important to:

- Establish a benchmark for soil amendments
- Evaluate site uniformity
- Avoid the buildup of harmful elements
Soil fertility analysis

- Location of soil samples

Consider nutrient variability within root zone

- Fertigation delivers nutrients to confined area

- Nutrients preferentially extracted from wetted zone
Soil Chemical Analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measurement/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>Acidity and Alkalinity</td>
</tr>
<tr>
<td>Salinity</td>
<td>EC (electrical conductivity)</td>
</tr>
<tr>
<td>Permeability</td>
<td>ESP (exchangeable sodium percentage)</td>
</tr>
<tr>
<td>Toxicity</td>
<td>Chloride, Boron, Sodium</td>
</tr>
<tr>
<td>Cation Exchange</td>
<td>Potassium, Calcium, Magnesium</td>
</tr>
<tr>
<td>Amending</td>
<td>Lime or gypsum requirement</td>
</tr>
<tr>
<td>Baseline nutrient levels</td>
<td>Background information and awareness</td>
</tr>
</tbody>
</table>
Soil chemistry components

pH effect on nutrient availability

![Soil pH Chart](chart.png)
Soil Fertility Analysis

- Changes in soil test level over time

Test Level over Time (1994-2008)

- Optimum
- High
- Excessive
- Low

<table>
<thead>
<tr>
<th>Year</th>
<th>Test Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>Low</td>
</tr>
<tr>
<td>96</td>
<td>Low</td>
</tr>
<tr>
<td>98</td>
<td>Low</td>
</tr>
<tr>
<td>00</td>
<td>Low</td>
</tr>
<tr>
<td>02</td>
<td>Low</td>
</tr>
<tr>
<td>04</td>
<td>Low</td>
</tr>
<tr>
<td>06</td>
<td>Low</td>
</tr>
<tr>
<td>08</td>
<td>Low</td>
</tr>
</tbody>
</table>
Tissue Analysis - Phenology Stages

Bloom
- Survey Sampling
- Early information
- Easy sampling
- Useful for determining nutrient needs

Veraison
- Follow-up sampling
- Refining K needs

Midsummer to Harvest
- Problem solving, especially for Na, Cl & K
Monitoring Tissue Nutrient Levels

For evaluating fertilizer needs:
- Sample at full bloom
- Petioles from 75 -100 vines
- Sample leaf opposite a cluster
Veraison Follow-up Sampling

- Sample recently fully expanded matured leaves (6th or 7th back from tip)
Diagnosing Visible Symptoms

- Sampled when abnormal symptoms appear
 - Symptoms generally appear midseason or at harvest
- If symptoms show, sample affected leaves
- If toxicities a concern, sample both petiole and blade
- Sample non-symptom vines for comparison
Sampling

Intensity should reflect:

✓ Soil variability
✓ Varieties and rootstocks
✓ Intensity of farming
What plant analyses to make

General
- Nitrate-nitrogen (NO_3^-)
- Total Phosphorus (P)
- Total Potassium (K)
- Zinc (Zn)
- Boron (B)

Trouble diagnosis
- Chloride (Cl)
- Sodium (Na)
- Potassium (K)
- Magnesium (Mg)
- Manganese (Mn)

- Toxicity
- Deficiency
Nutrient Analysis

- Interpretation of laboratory results

- Adverse plant effects
- (-) Economic return
- Environmental issues
Interpretive Guide for Grape Petiole Analysis at Bloom and Veraison

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Deficient (below)</th>
<th>Adequate (above)</th>
<th>Excessive (above)</th>
<th>Toxic (above)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_3$-N, ppm</td>
<td>350</td>
<td>500</td>
<td>2,000</td>
<td>8,000</td>
</tr>
<tr>
<td>N (total), %</td>
<td></td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P (total), %</td>
<td>0.10 (0.08)*</td>
<td>0.20 (0.15)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K (total), %</td>
<td>1.0 (0.5)*</td>
<td>1.5 (0.8)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg (total), %</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zn (total), ppm</td>
<td>15</td>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B (total), ppm</td>
<td>25</td>
<td>30</td>
<td>100</td>
<td>150</td>
</tr>
</tbody>
</table>

* Veraison values in parenthesis (Christensen 2000)
Tissue Analysis Limitations

<table>
<thead>
<tr>
<th>Element</th>
<th>Limitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate-N</td>
<td>Differs by cultivar, region, and weather</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Critical levels are more consistent</td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>Magnesium</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>Boron</td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Lack of relationship to symptoms, contamination</td>
</tr>
</tbody>
</table>
N Critical Levels

* Petiole NO$_3$-N provides a wider spread between adequate and deficient levels as compared to % total N based on N rate studies
Assessment of Nitrogen Requirements

- Vine vigor
- Canopy density
- Cultural requirements of cultivar and site
- Rootstock influence on nutrient uptake
- Knowledge of N inputs
 - fertilizer, irrigation water, cover crop
- Soil and root conditions
- Tissue analysis to detect extreme values and trends over seasons
Nutrients removed in one ton of grapes
(Averages in literature)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>lbs/ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>2.92</td>
</tr>
<tr>
<td>K</td>
<td>4.94</td>
</tr>
<tr>
<td>P</td>
<td>0.56</td>
</tr>
<tr>
<td>Ca</td>
<td>1.0</td>
</tr>
<tr>
<td>Mg</td>
<td>0.2</td>
</tr>
<tr>
<td>Zn</td>
<td>0.00115</td>
</tr>
<tr>
<td>B</td>
<td>0.00065</td>
</tr>
<tr>
<td>Fe</td>
<td>0.01050</td>
</tr>
</tbody>
</table>
Nitrogen practice – Drip Irrigation

Timing: Spring to early summer and/or Postharvest

Rate, lbs N/acre: 0 to 30

Rate is dependent on vine vigor level and production level

Apply in increments over time
Nutrient Management

• Retention is a problem in many soils

• Advantageous to apply nutrients in small increments as needed