Aspects Related to Mineral Nutrition in Irrigated Grapevines

Larry Bettiga Viticulture Advisor Monterey, Santa Cruz and San Benito Counties

Mineral Nutrient Deficiencies and Excesses in Grapes

Common Nitrogen Potassium Zinc Boron

Less Common Phosphorus Magnesium Iron Manganese

Infrequently or not observed Calcium Sulfur Copper Molybdenum

Nitrogen Chloride Boron Sodium

Macronutrients - yellow Micronutrients - white

Managing Mineral Nutrition

Knowledge of:

- Site/Soil characteristics and chemistry
- Vineyard production goals
- Fertilizer inputs
- Cultural practices
- Tissue and soil analysis
- Observation and judgment

FERTILIZERS

- Fertilizers are a method of supplying supplemental elements where deficient or unavailable to the plant
- The most common element supplied by fertilizers to vineyards is nitrogen

Nutrient Mobility

- Another way of classifying nutrients is their behavior in water.
- Some move wherever water goes and some are held strongly by the soil.

Problem: Contamination of surrounding water bodies

Nitrates, Phosphorous

Eutrophication

Lakes and Streams

Nitrates

Groundwater

Nutrient Management

- Nitrogen basics:
 - Essential plant nutrient
 - Taken up by plants in both ammonium (NH4⁺) and nitrate (NO3⁻) forms
 - Majority of plant uptake is the nitrate form
- Nitrogen becomes an environmental problem when it moves off-site
 - Surface water, groundwater
 - Agriculture is only one of the nonpoint sources

Nitrogen Sources

- Soil reserves
- Irrigation water
- Fertilizer
- Cover crops

Nitrogen cycle

Determine Fertilizer Requirements

 Determine nutrient contents of soil amendments

 Manure, compost

Determine Fertilizer Requirements

Evaluate well water for nutrient levels

1 ac/ft water with 10 ppm nitrate-N provides 27.9 lbs/N per acre

The nitrates from well water are indistinguishable from fertilizer nitrates, and function identically.

Time

Apply Fertilizers Efficiently

Once crop nutrient requirements are determined:

Use fertigation to apply fertilizers, if feasible

Apply Fertilizers Efficiently

Irrigation system

Practices to
improve system
efficiency &
uniformity

Reduce Nutrient Movement

- Sequester nutrients, keep in organic form
- Reduce erosion
- Trap sediments

- From water, wind, eroding soil
 - Cover crops
 - Filter strips
 - Vegetative Buffer Strips

Reduce Nutrient Movement

 Avoid applying fertilizers prior to predicted rain events Manage irrigation and fertigation to avoid losses below root zone

Factors affecting nutrient uptake

Absolute deficiency

Nutrient is at inadequate levels for vine growth

Induced deficiency

Nutrient present in but uptake by grapevine roots affected by:

- Phylloxera or nematode damage
- Soil moisture status or irrigation patterns
- High levels of other mineral in the soil
- Variety or rootstock
- High crop levels

Tissue sampling

Most reliable method for nutritional analysis
 Nutrients that the vine can remove from soil

Two sampling purposes:

1. General nutritional levels

2. Diagnosing visible vine disorders

Soil fertility analysis

 A major limitation is that soil analysis is not a good indicator of nutrient availability In a nutrient management program soil analysis is important to:

- Establish a benchmark for soil amendments
- Evaluate site uniformity
- Avoid the buildup of harmful elements

Soil fertility analysis

Location of soil samples

Consider nutrient variability within root zone

- Fertigation delivers nutrients to confined area
- Nutrients preferentially extracted from wetted zone

Soil Chemical Analysis

pH -Salinity -Permeability -**Toxicity** -Cation Exchange -Amending -**Baseline nutrient** levels -

Acidity and Alkalinity EC (electrical conductivity)

ESP (exchangeable sodium percentage) Chloride, Boron, Sodium

Potassium, Calcium, Magnesium

Lime or gypsum requirement

Background information and awareness

Soil chemistry components

pH effect on nutrient availability

Soil Fertility Analysis Changes in soil test level over time

<u>Tissue Analysis - Phenology Stages</u>

Bloom

- Survey Sampling
- Early information
- Easy sampling
- Useful for determining nutrient needs

Veraison

- Follow-up sampling
- Refining K needs

Midsummer to Harvest

 Problem solving, especially for Na, CI & K

Monitoring Tissue Nutrient Levels

For evaluating fertilizer needs:
✓ Sample at full bloom
✓ Petioles from 75 -100 vines
✓ Sample leaf opposite a cluster

Collect petioles and discard the blade for nutrient analysis

Veraison Follow-up Sampling

•Sample recently fully expanded matured leaves (6th or 7th back from tip)

Diagnosing Visible Symptoms

- Sampled when abnormal symptoms appear
 - Symptoms generally appear midseason or at harvest
- If symptoms show, sample affected leaves
- If toxicities a concern, sample both petiole and blade
- Sample non-symptom vines for comparison

Sampling

Intensity should reflect: ✓ Soil variability ✓ Varieties and rootstocks ✓ Intensity of farming

What plant analyses to make

Nutrient Analysis

Interpretation of laboratory results

Interpretive Guide for Grape Petiole Analysis at Bloom and Veraison

Nutrient	Deficient (below)	Adequate (above)	Excessive (above)	Toxic (above)
NO ₃ -N, ppm	350	500	2,000	8,000
N (total), %		0.9		
P (total), %	0.10 (0.08)*	0.20 (0.15)*		
K (total), %	1.0 (0.5)*	1.5 (0.8)*		
Mg (total), %	0.2	0.3		
Zn (total), ppm	15	26		
B (total), ppm	25	30	100	150

* Veraison values in parenthesis (Christensen 2000)

Tissue Analysis Limitations

Nitrate-N

Differs by cultivar, region, and weather

Phosphorus Potassium Magnesium Zinc Boron Manganese

Critical levels are more consistent

Iron

Lack of relationship to symptoms, contamination

N Critical Levels

* Petiole NO₃-N provides a wider spread between adequate and deficient levels as compared to % total N based on N rate studies

Assessment of Nitrogen Requirements

- Vine vigor
- Canopy density
- Cultural requirements of cultivar and site
- Rootstock influence on nutrient uptake
- Knowledge of N inputs fertilizer, irrigation water, cover crop
- Soil and root conditions
- Tissue analysis to detect extreme values and trends over seasons

Nutrients removed in one ton of grapes (Averages in literature)

<u>Nutrient</u>	<u>lbs/ton</u>	
Ν	2.92	
Κ	4.94	
Ρ	0.56	
Ca	1.0	
Mg	0.2	
Zn	0.00115	
B	0.00065	
Fe	0.01050	

Nitrogen practice – Drip irrigation

Timing: Spring to early summer and/or Postharvest

Rate, Ibs N/acre: 0 to 30

Rate is dependent on vine vigor level and production level

Apply in increments over time

Nutrient Management

Retention is a problem in many soils

 Advantageous to apply nutrients in small increments as needed

A 12 - March Marsheld & Sound Street

2015 Privers

And International Contraction