INSECT PESTS OF THE GRAPEVINE

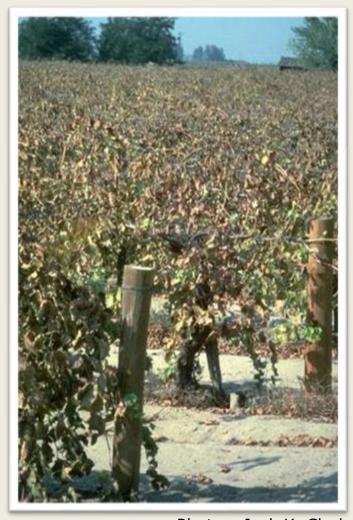
Lucia G. Varela
North Coast IPM Advisor

UC Cooperative Extension& Statewide IPM Program

Major Insect & Mite Pests

- Leafhoppers
 - Western Grape, Variegated and Virginia Creeper
- Spider Mites
 - Willamette & Pacific
- Mealybugs:
 - Grape, Vine, Obscure, Longtailed and Gill's
- Worms
 - Berry feeders, leafrollers, defoliators
- Pierce's disease vectors
 - Sharpshooters and spittlebugs
- Others:
 - Scale, phylloxera, thrips

Leafhoppers in California Vineyards


Photos: Jack K. Clark

- Western grape leafhopper, Erythroneura elegantula, found throughout California, north of the Tehachapi Mountains.
 - Adults pale yellow with orange markings and two dark brown spots on thorax.
- Variegated leafhopper, E. variabilis, found in the Central Valley as far north as San Joaquin County and in southern California.
 - Adults have red, white, green, brown mottling.
- Virginia creeper leafhopper, E. ziczac, found in Northern California and Northern Sierra foothills.
 - Adults have reddish-brown zigzag markings on the wing.

All 3 species overwinter as adults

Leafhopper Leaf Damage

Photos: Jack K. Clark

Monitor for nymphs

Nymphs are small (~1/32 to 1/8"). Found primarily on under surface of leaf.

Western grape leafhopper

- Pale yellow marking on thorax only visible with a hand lens. Eyes appear white.
- 2 to 3 broods a year

Variegated leafhopper

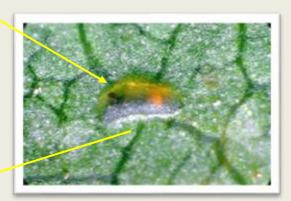
- Yellow-brown to orange-brown. 1st and 2nd stages primarily on the upper surface of the leaf.
- 2 to 4 broods a year

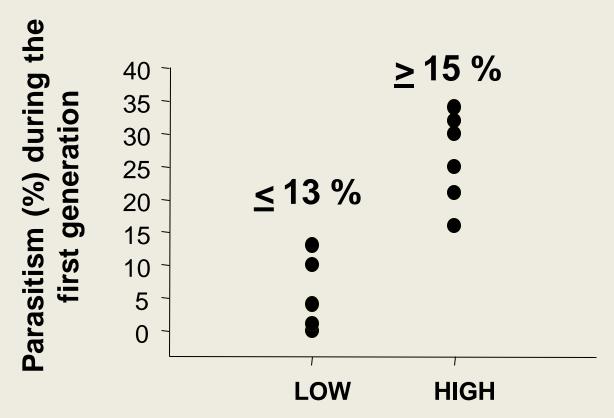
Virginia creeper leafhopper

- First stage is colorless with dark reddish brown eyes.
- 2nd and 3rd stage have 4 orange markings on the thorax and dark red eyes.
- 4th and 5th stage nymphs have 4 reddish-brown markings on the thorax and dark red eyes.
- Cast-off skin of fifth molt (with reddish-brown markings) sticks to leaf, signaling adult emergence.

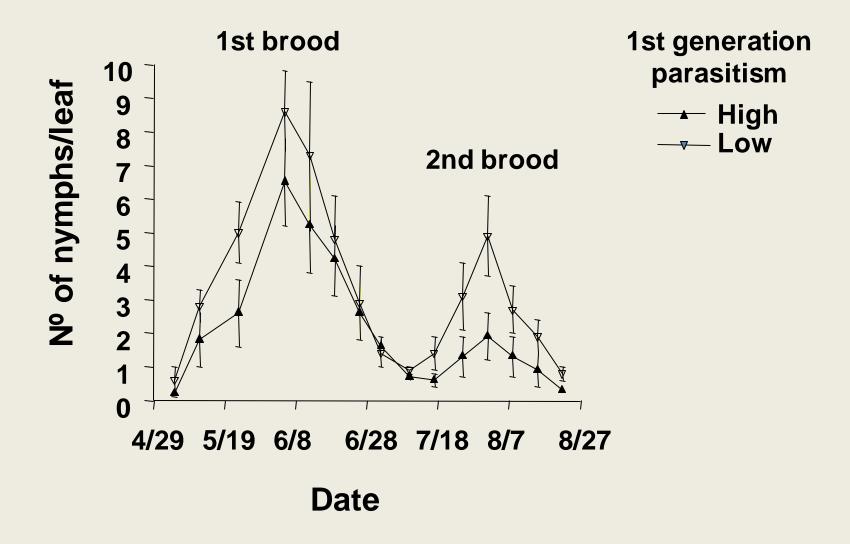
Photos: Jack K. Clark

Egg Parasitism by Anagrus sp.





Photos: Jack K. Clark


- A. erythroneurae
- A. daanei
- A. tretiakovae

Western grape leafhopper parasitism monitored in 25 vineyards. Vineyards divided into 2 groups:

Egg parasitism level during the first generation

Seasonal numbers of Leafhopper nymphs

Overwintering Refuges of the Parasite

Since all leafhopper species that feed on grapes overwinter as adults, *Anagrus* parasitoids overwinter inside eggs of alternate hosts

Prune leafhopper egg

Photos: Jack K. Clark

Cayote bush, Baccharis pilularis, as alternate host (Wilson et al. 2016)

Leafhopper eggs

Female leafhopper lays minute bean-shaped egg under epidermis primarily on underside of expanded leaf.

- Western grape leafhopper:
 - Lays single eggs
- Variegated leafhopper
 - Single eggs embedded deeper in upper or lower surface of leaf, making it harder for the parasites to attack the eggs
- Virginia creeper leafhopper:
 - Lays eggs side-by-side in batches of 2 to 7 (sometimes singly)
 - Covers eggs with bluish-gray secretion.

Leafhopper Predators

 Spiders are the most important predators

Photos: Jack K. Clark

Spider Mites

- Willamette spider mite,
 Eotetranychus willamettei
 - first pair of legs translucent.

Photos: Jack K. Clark

- Pacific spider mite,
 Tetranychus pacificus,
 - first pair of legs yellow to reddish.

Willamette Spider Mite

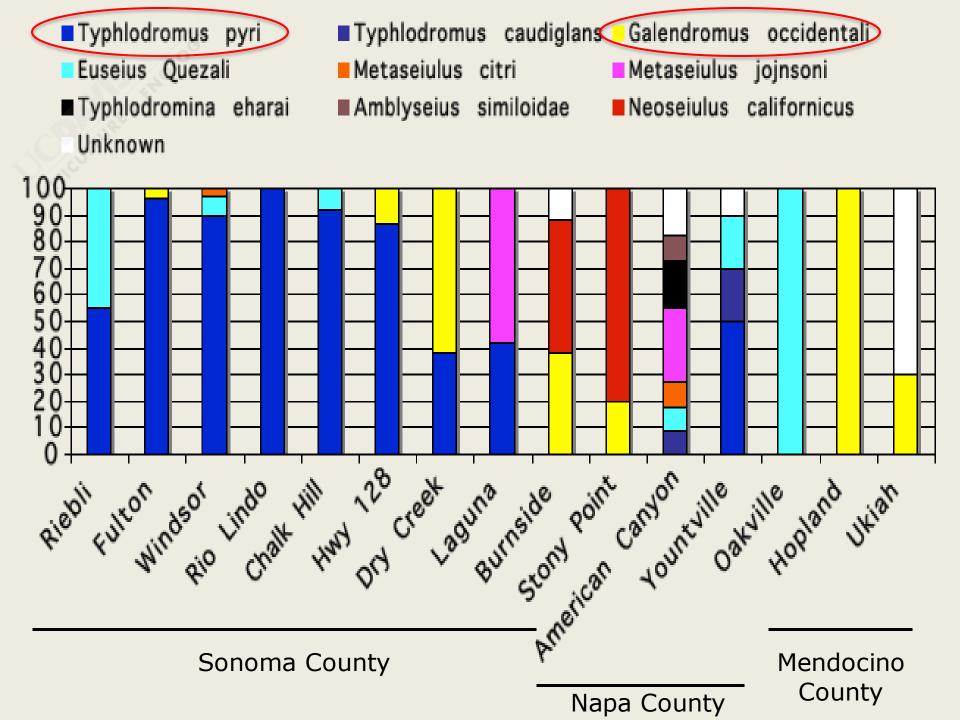
On shady side of canopy

Form colonies and feed along the vein on the underside of the leaf

Photos: Jack K. Clark

Pacific Spider Mite

Clump distribution on underside of leaf


On the sun exposed side of the canopy

Photos: Jack K. Clark

Predatory Mites

- Pear shaped, slightly larger than spider mites
- Translucent to slightly reddish
- Moves fast searching
- Oval-shaped eggs

'Life style' types proposed by McMurtry and Croft (1997)

Type I

- Specialized predators of spider mites
- Live in spider mite colonies with dense webbing

• Type II

- Preference for but not limited to spider mites
- Commonly live in spider mite colonies with moderate to dense webbing but also prey on other mites, e.g. eriophyids, tydeids

Type III

- Food habits include all types of mites, small insects, pollen, nectar

Type IV

 Food habits- pollen, spider mites (they don't enter webbed colonies), other mites, thrips, etc.

Mealybugs in California Vineyards

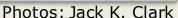
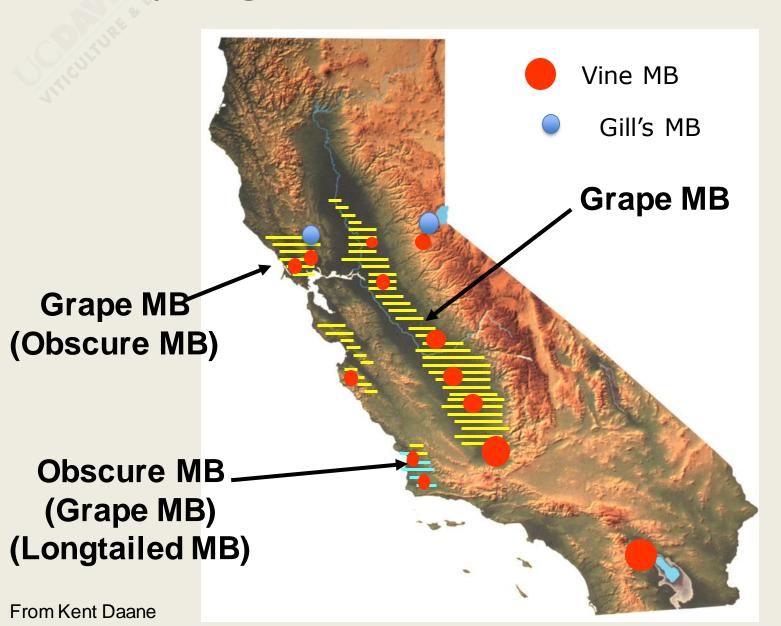
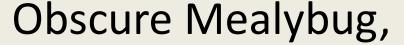



Photo: David Haviland


Longtailed mealybug/

Mealybugs in California

Grape Mealybug,

Pseudococcus maritimus

Pseudococcus vibruni

Photos: Jack K. Clark

Rectangular shaped Edge filaments long & thin Long tails

Defensive fluid deep orange

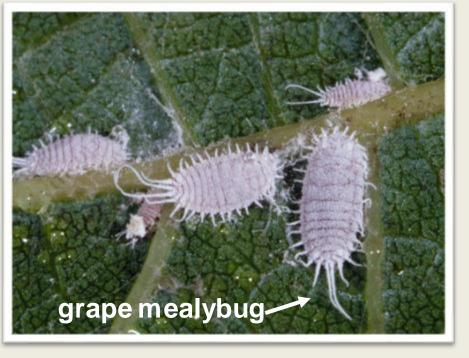
Rectangular shaped Edge filaments long & thin Long tails

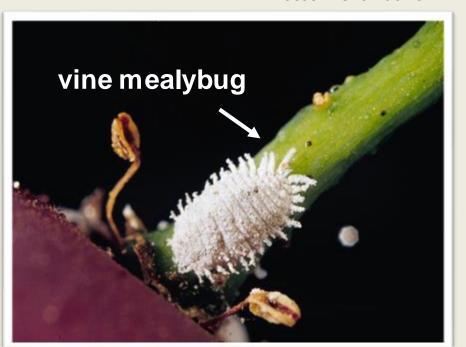
Defensive fluid clear

Grape Mealybug,

Pseudococcus maritimus

Vine Mealybug,


Planococcus ficus



Photos: Jack K. Clark

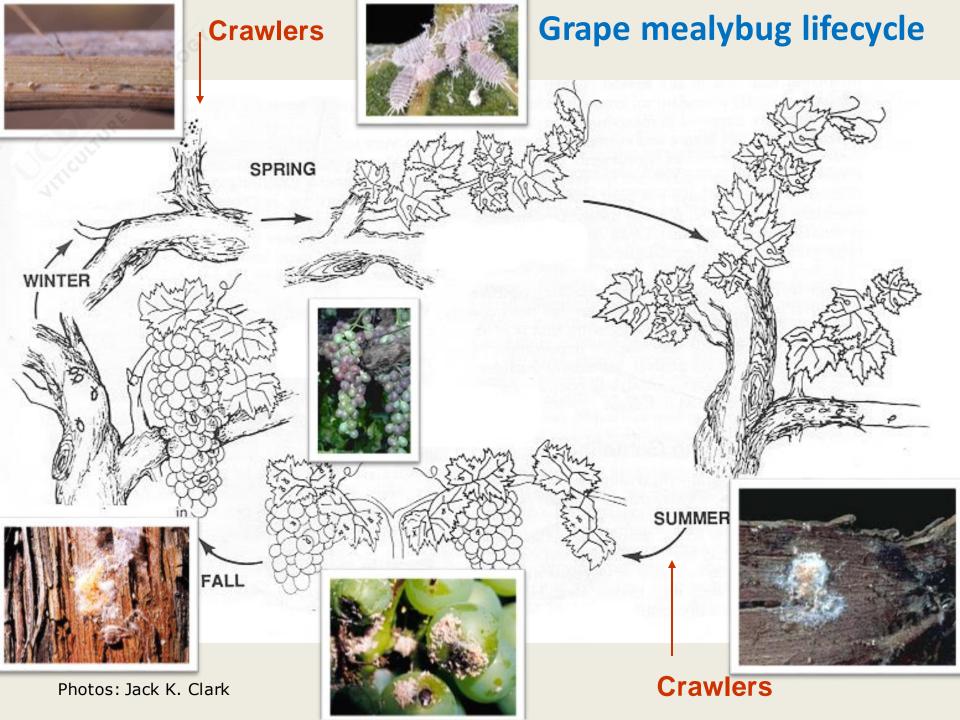
Rectangular shaped Edge filaments long & thin Long tails Oval shaped Edge filaments short & wide Short tails

Photos: Kent Daane

Grape Mealybug "Complex"

· long "tail"

Grape


- 2 generations per year
- stages are synchronized
- moderate honeydew production

Obscure

- 2-3 generations per year
- stages overlap throughout year
- moderate to high honeydew production

Vine mealybug:

- short tails
- 3-7 generations per year
- stages overlap throughout year
- excessive honeydew production
- feeds throughout the canopy
- feeds on roots in light soils

Monitoring Grape Mealybug at Delayed Dormant

- In vineyard with a history of GMB
- Monitor spurs for crawlers

Photos: Jack K. Clark

Grape mealybug parasitoids

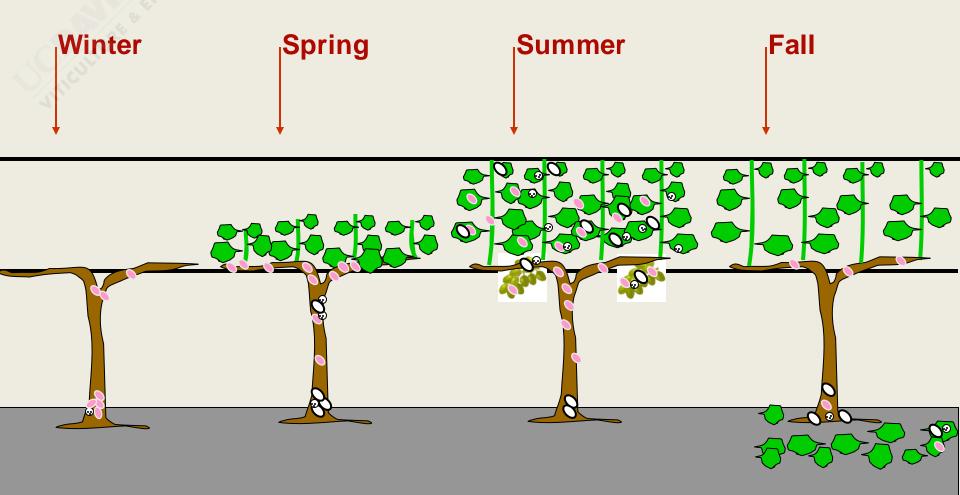
Complex of several species

 Pseudophycus angelicus

Acerophagus notativentris

Photos: Jack K. Clark

Biological Control


Mealybug destroyer (*Cryptolaemus montrouzieri*)

Photos: Jack K. Clark

Vine Mealybug Life Cycle

VMB Infested green-growing vines

Photo: Rhonda Smith

Vine Mealybug Parasite

Anagyrus pseudococci

- Prefers later vine mealybug stages
- In San Joaquin Valley parasitism rate reaches 80% in the summer generations
- Overwinters until May

Photo: Kent Daane

Pheromones lures to monitor for GMB and VMB

Photo: Kent Daane

Gill's mealybug, Ferrisia gilli

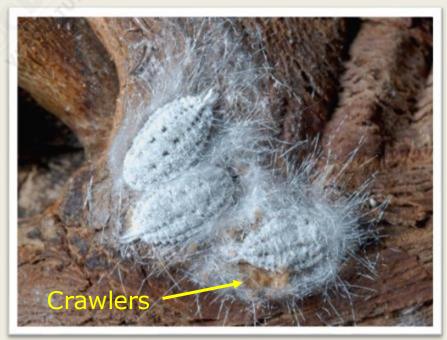


Photo: Kent Daane

E Showed a 1999 Propries

- Adult females flat and oval; body faded pink and covered with white wax.
 Two broad white tails.
 Covered by white, crystalline filaments
- Give birth to crawlers
- Two generations/year in Sierra foothills.
- Overwinter as nymphs

Adult male mealybug

Photo: David Haviland

Key times for Gill's seasonal development:

- Spring (May): look for adults on young new spurs, shoots.
- Early Summer (late June in foothills): Treat first generation crawlers on leaves-before they enter clusters.
- July-August: Gill's entering clusters.
- Mid-Sept.: 2nd generation Honeydew and ants tending.
- Overwinter: as nymphs (2nds-3rds) under bark.

From Lynn Wunderlich

Parasitoid: Acerophagus sp.

Photo: David Haviland

- Parasitizes 2nd and 3rd nymphal stages
- Most commonly found under grapevine trunk bark in early spring and in clusters prior to harvest.

"The Worms"

In clusters:

- Berry feeders: European grapevine moth
- Leafrollers:
 - Omnivorous leafroller
 - Orange tortrix
 - Light brown apple moth

Defoliators:

- Grape leaffolder
- Western grapeleaf skeletonizer

European grapevine moth, Lobesia botrana

Photo: Monica Cooper

Three generations a year

First generation larvae feed on flower cluster. 2nd and 3rd generation larvae feed inside berries.

Damage in September 2009

Photo: Jack K. Clark

Photo: Katey Taylor

Leafrollers in California Vineyards

Orange Tortrix, Argyrotaenia franciscana

Omnivorous Leafroller, Platynota stultana


Photos: Jack K. Clark

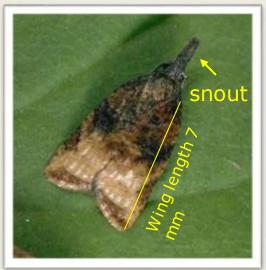
Light Brown Apple Moth, Epiphyas postvittana

Leafroller Damage

Photos: Jack K. Clark

Leafroller larvae

Omnivorous leafroller



Traps Catch Males

Orange tortrix

Omnivorous leafroller

Light brown apple moth

Light brown apple moth

MALES IN TRAPS

Photos: J. K. Clark

Light Brown apple moth

Costal fold

An expanded outer edge of the forewing folds up over the edge of the wing as a flap

Photo: S. Kinnee & M. Epstein, CDFA

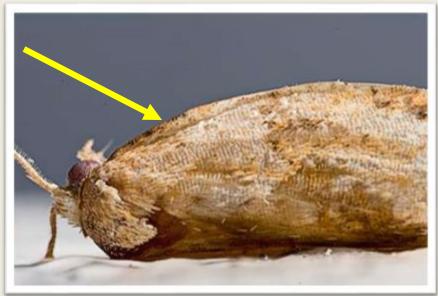


Photo: B. Oliver, Monterey Agricultural Com. Office

Grape Leaffolder, Desmia funealis

Photos: Jack K. Clark

- Overwinters in the pupal stage in the vineyard floor
- Three generations a year
- 3rd to 5th stage larvae with small black spots above second pair of legs.

Grape Leaffolder Damage

Photos: Jack K. Clark

Young larvae feed in groups between overlapping leaves.

DAMAGE

 Reduced leaf surface due to leaf roll; defoliation may occur by the third generation

MONITOR

 As larvae begin making rolls examine vineyard twice a week

Parasitoid Bracon cushmani

Western Grapeleaf Skeletonizer

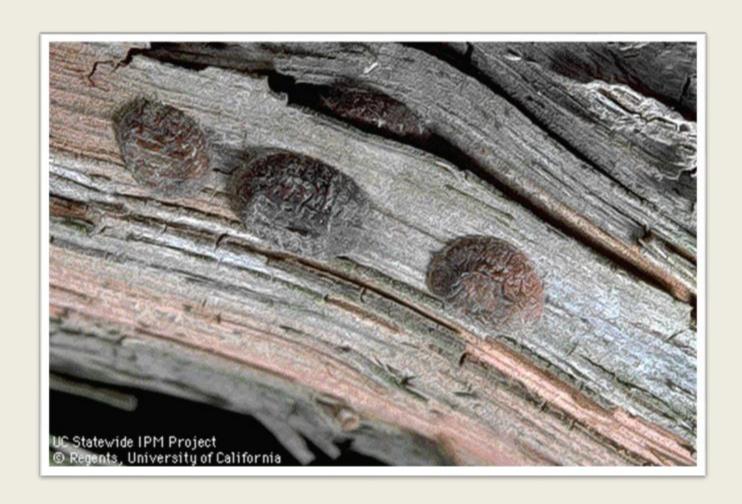
Three generations/year

Overwinters in pupal stage under the bark

Damage caused by WGLS

- Leaf damage may continue to increase through the season in uncontrolled populations
- Defoliation may occur by the second or third generation

Biological Control



European Fruit Lecanium Scale,

Parthenolecanium corni

European Fruit Lecanium Scale

European Fruit Lecanium Parasitoids

- Coccophagus lycimnia
- Metaphycus luteolus
- Metaphycus insidiosus
- Blastothrix longipennis

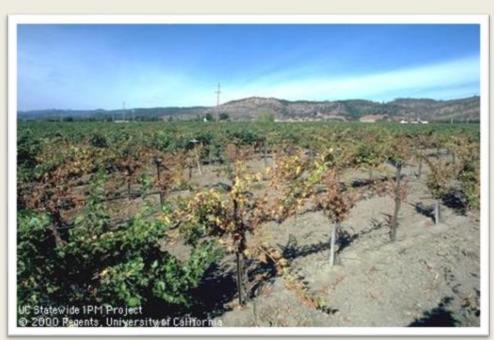
Sharpshooters

Grape Phylloxera, Daktulosphaira vitifoliae

• Very small (0.02" wide).

- Lemon yellow.
- Overwinters as small nymphs on roots.
- Starts feeding when soil temperature exceed 60°F.
- 5 to 8 generations/year

Grape Phylloxera Damage



Photos: Jack K. Clark

- Saliva injected as they feed causes roots to swell.
- In the rootlets they cause nodosities.
- On larger roots they cause tuberosities.

Grape Phylloxera Damage

Photos: Jack K. Clark

- Root injuries impair absorption of nutrients and water causing decline of the plant.
- Clay or adobe soils are more favorable to infestation than lighter soils.

Western Flower Thrips, Frankliniella occidentalis Grape Thrips, Drepanothrips reuteri

Photos: Jack K. Clark

RESOURCES

- ▶ Grape Pest Management Manual 3rd edition, Larry Bettiga editor UC DANR Publication # 3343
- Vineyard Pest Identification and Monitoring Cards:
 UC DANR Publication #3532 English
 UC DANR Publication #3538 Spanish
 UC DANR Publication # 9012 ibook & #9016 MOBI/kindle
- UC Statewide Integrated Pest Management Program website: http://ipm.ucanr.edu/PMG/selectnewpest.grapes.html